• Home /Exam Details (QP Included) / Main Exam / Optional Subject-Medical Group / Physiology / W.B.C.S. Main 2018 Question Answer – Physiology – Safe Drinking Water.
  • W.B.C.S. Main 2018 Question Answer – Physiology – Safe Drinking Water.
    Posted on December 19th, 2018 in Physiology
    Tags:

    W.B.C.S. Main 2018 Question Answer – Physiology – Safe Drinking Water.

    WBCS  ২০১৮ মেইনস   প্রশ্নের উত্তর – দেহতত্ব – নিরাপদ পানীয় জল।

    Water is connected to every forms of life on earth. As a criteria, an adequate, reliable, clean, accessible, acceptable and safe drinking water supply has to be available for various users. The United Nation (UN) and other countries declared access to safe drinking water as a fundamental human right, and an essential step towards improving living standards. Access to water was one of the main goal of Millinium Development Goals (UN-MDGs) and it is also one of the main goal of the Sustainable Development Goals (SDGs). The UN-SDG goal 6 states that “Water sustains life, but safe clean drinking water defines civilization”. Despite these facts, there are inequalities in access to safe drinking water in the world. In some countries, sufficient freshwater is not available (physical scarcity); while in other countries, abundant freshwater is available, but it is expensive to use (economic scarcity). The other challenge is the increasing population of the world at an alarming rate, while the available freshwater resources almost remains constant. This chapter presents aspects of safe drinking water – background information, definition of water safety and access, benefits, principles and regulations, factors challenging the sustainable water supply and water quality standards and parameters.Continue Reading W.B.C.S. Main 2018 Question Answer – Physiology – Safe Drinking Water.

    Water covers more than two-thirds of the earth’s surface, but mostly salty and undrinkable. The available freshwater resource is only 2.7% of the available water on earth but only 1% of the available freshwater (in lakes, rivers and groundwater) is accessible. Most of the available freshwater resources are inaccessible because they are in the hidden part of the hydrologic cycles (deep aquifers) and in glaciers (frozen in the polar ice), which means safe drinkable water on earth has very small proportion (~3%) in the freshwater resources. Freshwater can also be obtained from the seawater by desalinization process. In some countries, sufficient freshwater is not available (physical scarcity). In some countries, abundant freshwater is available, but it is expensive to use (economic scarcity).

    South Africa receives about 450 mm annual rainfall and is classified as a water-stressed country [1, 2]. The available freshwater resource can sustain 80 million people only. Some African countries (Ethiopia, Congo and Papua New Guinea) have excess freshwater resources, but they are having water shortage due to economic reasons. Ethiopia, the second populous countries in Africa, is the water tower of east Africa due to the availability of abundant water (nine major river basins). However, the country is among the few countries in the world affected by chronic water problem. The water scarcity in the world is further aggravated by the reduced water quantity (or an increased water demands) due to population growth and the declining of water quality by pollution.

    As a criterion, an adequate, clean and safe drinking water supply has to be available for various users . There is no universally accepted definition of “safe drinking water.” Safe drinking water is defined as the water that does not represent any significant risk to health over a lifetime of consumption . The safe drinking water must be delivered that is pure, wholesome, healthful and potable. Safe water is not necessarily pure, it has some impurities in it. It contains some traces of salts such as magnesium, calcium, carbonates, bicarbonates and others. The degree of purity and safety is a relative term and debatable. Clean/pure water has no minerals and it only contains H and O. According to the Monitoring organizations under the supervision of the Joint Monitoring Programme (JMP), “safe drinking water” is defined as water from an “improved water source,” which includes household connections, public standpipes, boreholes, protected dug wells, protected springs and rainwater collections. According to the same organization, “access to safe drinking water” is defined as the availability of at least 20 l per person per day from an “improved” source within 1 km of the user’s dwelling.

    Safe drinking (potable) water is the water that can be delivered to the user and is safe for drinking, food preparation, personal hygiene and washing . The water must meet the required (chemical, biological and physical) quality standards at the point of supply to the users. Therefore, safe drinking water is a relative term, which depends on the standards and guidelines of a country; the standards set for the different quality parameters are different. The standard of WHO is not exactly the same as that of USA, Canada, European Commission, Russia, India, South Africa, Ethiopia, and so on. The term “safe” depends on the particular resistance ability of an individual. Water that is safe for drinking in some African countries might not be safe in European countries. Some African countries already developed resistance to some of the water-related diseases.

    Safe drinking water is anonymously accepted as an international agenda and priority, which is evident from the MDGs and SDGs of the United Nations (UN) initiative and vision (MDGs 7 and SDGs 6). Despite the MDGs effort, still many people lack access to safe drinking water, even lack access to basic water. Globally, more than 1 billion people do not have access to safe drinking water. According to the Third World Academy of Sciences (TWAS) report , contaminated/dirty water is killing more people than cancer, AIDS, wars or accidents. Population of the world is increasing and the available freshwater resources almost remain constant. The number of people without access to safe drinking water is increasing. This is mostly related to the ever-increasing population growth in the developing countries and the inability (or unwillingness) of governments (local and national) to provide adequate water supply facilities in these countries.

    Drinking water safety and access

    Access to safe drinking water

    Water is connected to every form of life on earth and is the basic human need, equally important as air. Water is connected to every aspect of human day-to-day activities directly or indirectly. At a basic level, everyone needs access to safe water in adequate quantities for drinking, cooking, personal hygiene and sanitation facilities that do not compromise health or dignity. Therefore, access to safe and dependable (clean and fresh) water is the fundamental/basic right of humans. The UN and other countries declared that access to clean, safe drinking water is a basic human right, and an essential step toward improving living standards worldwide. Access to water was one of the main goals of UN-MDGs and it is also one of the main goals of the UN-SDGs. The South African constitution declares “access to water and food for all” as the main goal in the constitution following the 1998 National Water Act . Despite these facts, still there are inequalities in access to safe drinking water in South Africa and in the world, the problem has more impacts on the poor, women and children. There are also inequalities within and among nations. For instance, the population with access to safe drinking water in Congo was 77% for rural dwellers and 17% for rural dwellers by the year 2002 . Inequalities in access to water and sanitation are morally unacceptable, but they are prohibited under international law.

    Globally, it is estimated that 89% of people have access to water suitable for drinking . According to UNDP report, one out of six people do not have access to clean water, that is, about 1.1 billion people lack access to safe drinking water. In some countries, especially in Africa, almost half of the population do not have access to safe drinking water and hence, is afflicted with poor health . The number of people without safe drinking water is more than the number reported by UNDP. This is due to the fact that most of the water supply facilities initiated during the MDGs in developing countries are not functioning properly.

    Benefits of safe drinking water

    Water of satisfactory quality is the fundamental indicator of health and well-being of a society and hence, crucial for the development of a country. Contaminated water not only has the potential to pose immediate threat to human, but also can affect an individual productive rate. According to the WHO  report, an estimated 1.1 billion people in the world drink unsafe water. Approximately 3.1% of the global annual death (1.7 million) and 3.7% of the annual burden (disability) (54.2 million) are caused by the use of unsafe water and lack of basic sanitation and hygiene.

    Water provides a number of benefits and services for humans and the ecosystem. As reported by OECD, the benefit of water is not documented sufficiently, resulting in low political priority for water issues and in suboptimal levels of investment in water infrastructures. The same document also indicates that the benefit of water is mostly hidden in other technical documents. Most researchers have indicated that the benefit-cost ratio of access to water is more than 2, and in some cases, it can reach 7.0. In developing countries like Africa, the benefit-cost ratio of access to water is very high (more than 5:1 ratio) because it is related to every dimension of developmental activities (agriculture, energy, industry, etc.). In such areas, the return on investment in water services usually result in a substantial economic gains, estimated in the range of 5–28 USD per 1 USD. In addition to the economic gains, water supply projects have technical, environmental and political gains. Water sector is interconnected with other development sectors (agriculture, energy, industry, etc.) and factors (social, economic, environmental, health, educational, legal and political) at local, national levels, regional and international levels . In fact, access to safe water has a number of direct and indirect benefits related to health, education, poverty and environment. The UN World Water Development Report indicated that there is a linkage or nexus between water and sustainable development, far beyond its social, economic and environmental dimensions. The report clearly indicated that access to safe water has a great role in addressing the developmental challenges, such as human health, food and energy security, urbanization and industrial growth, as well as climate changes. Especially, there is a strong nexus between water, food and energy.

    The MDGs of the UN targeted to “halve the population without access to safe drinking water and basic sanitation” in the period from 1990 to 2015. According to the report by WHO and UNICEF through their Joint Monitoring Programme (JMP) for water supply and sanitation, about 2.3 billion people have gained access to an improved drinking water. The report indicates an impressive gain has been made in the past two decades, but much has to be done. The success of MDGs is even doubtful since many of developing countries, especially the poor are still struggling to get access to safe drinking water. As stated in Section 2.1, the number of people without access to safe drinking water is more than the value reported by the UN.

    Research has shown that the majority of people without access to safe water are from developing nations. This shows that many people in the developing world, especially Africa, still depend on unsafe water sources for daily water need and affected by chronic water problems and water-borne diseases. Millions of people die due to water-related diseases like cholera, diarrhea, malaria, dengue fever, and so on. Globally, water-borne diseases kill more than 25,000 people per day and about 5000 children die per day due to water-related diseases (mainly diarrhea), most of them can be easily prevented. Diarrhea and related diseases kill about 1.8 million children every year, most of them are in developing countries . It is also estimated that about 1.8 billion people drink water contaminated with Escherichia coli(indicator of fecal contamination) . In many parts of the world, especially developing countries, water-borne diseases represent the leading cause of death. Thus, access to safe water means a reduction of water-related diseases. It is an opportunity for improved health because it reduces the outbreak of health hazards.

    In cognizant to the benefits of water, the newly introduced ambitious Sustainable Development Goal (SDG) by UN in 2014  considers water as one of the main developmental pillars under SDG 6. In fact, water was also one of the main goals of the UN-MDGs. The UN-SDG 6 states that “Water sustains life but safe, clean drinking water defines civilization.” The UN-SDG 6 recommended a dedicated SDG for water under five target areas such as (i) WASH, (ii) water resources, (iii) water governance, (iv) water quality and wastewater management and (v) water-related disasters. This indicates that the benefit-cost ratio of water is very high since it has social, economic, financial and environmental benefits. The benefit of water extends to other developmental activities/sectors such as health, education, agriculture and food production, energy, industry and other social and economic activities. Therefore, achieving the UN’s SDG 6 seems very hard, especially in the poorest countries like Africa where there are lots of problems and challenges. It requires dramatic improvement to the quality of life and longevity . If we declare that “access to clean safe drinking water is a basic human right, then providing the necessary education, infrastructure and support to ensure the success of SDG 6 is the responsibility of us all.” In developing countries, improving access to safe water requires the establishment of good governance .

    Basic principles of safe drinking water supply

    Definition of terms

    There are basic standards, norms, criterion and indicators for safe drinking water. There are also policies, strategy and program under safe drinking water. These terms are well defined by Bos et al.. Norm refers to the standard of development related to the large group of society. Criterion refers to the agreed norm or standard used for the decision. Indicator refers to the measured value of individual water quality parameters. Standard refers to the agreed target/threshold value established as an agreed target, which is set by an authority. There are various water quality standards and criteria in the world. Details of the water quality standards are provided under Section.

    Water regulations and act

    Water regulations are important for the provision of drinking water that is sufficient in quantity, safe, accessible, acceptable, affordable and reliable. Drinking water regulations include controlling of the water supply systems which are water source, water treatment, distribution, use, wastewater and gray water. Countries regulate drinking water differently depending on the quality of their water source. As stated earlier, different countries regulate drinking water differently depending on the quality of their water source.

    In South Africa, water sources are monitored by the Department of Water and Sanitation (DWS). This was achieved by the implementation of the National Water Act (NWA) 36 of 1998. The purpose of the NWA is to ensure that the nation’s water resources are protected, used, developed, conserved, managed and controlled. Local authorities are responsible for the supply of water to residents. This was achieved by the implementation of the Water Services Act (WSA) 108 of 1997. WSA are established to provide the following services : (1) ensuring the rights of access to basic water supply and sanitation; (2) setting national standards, norms and tariffs; (3) water service development plans; (4) prepare the regulatory framework for water service institutions and intermediaries; (5) establish and disestablish committee for water boards and water services and their powers and duties; (6) monitoring water services and intervention and (7)providing financial assistance to water service institutions.

    As a criterion, an adequate, clean and safe drinking water supply has to be available for various users . Moreover, water has to be accessible for all, including children, elders and disabled ones. Water availability refers to both sufficient quantities and reliability of service provisions. Adequacy refers to both the quality and quantity of water. Reliability refers to continuity of the service provision for the current and future generation, which is covered under the principle of sustainability, system robustness and resilience. Acceptability refers to esthetic value of water – the acceptable appearance, taste and odor of water. It is highly subjective parameter and largely depends critically on the perceptions of the local ecology, culture, education and experience and hence, there is no set clear and objective global acceptability standards. Accessibility to water refers to the accessibility to a reliable supply of water on a continuous basis close to the point of demand: within everyone’s reach: home, school, work, public places. It is related to the distance of water source from the point of demand (30 minutes walk or 0.2 km). That means the water has to be accessible for everyone, including children, elders and disabled ones. The detailed definition of the above water variables can be obtained from Bos et al.

    The role of a drinking water supplier is to provide adequate water for the community and prevent/mitigate risk of water contamination in different elements/points of water supply system such as source, treatment and distribution. They also should assure the delivery of a safe and esthetically pleasing drinking water to the consumer’s point. In general, the prevention, mitigation and elimination of water contamination are the responsibilities of water providers and regulators. Water regulations are also important for the provision of drinking water that is sufficient in quantity, safe, accessible, acceptable, affordable and reliable. Countries regulate drinking water differently depending on the quality of their water source. According to the WHO and US Environmental Protection Agency , there are guidelines and principles that need to be followed for water to be considered fit for use. The guidelines are as follows: physical, microbial, chemical and radiological. The water quality standards for different countries are summarized under Section.

    Our own publications are available at our webstore (click here).

    For Guidance of WBCS (Exe.) Etc. Preliminary , Main Exam and Interview, Study Mat, Mock Test, Guided by WBCS Gr A Officers , Online and Classroom, Call 9674493673, or mail us at – mailus@wbcsmadeeasy.in
    Visit our you tube channel WBCSMadeEasy™ You tube Channel
    Please subscribe here to get all future updates on this post/page/category/website
    "WBCS

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

     WBCS Foundation Course Classroom Online 2024 2025 WBCS Preliminary Exam Mock Test WBCS Main Exam Mock Test WBCS Main Language Bengali English Nepali Hindi Descriptive Paper