• Home /Exam Details (QP Included) / Main Exam / Optional Subject-Medical Group / Mathematics / Cauchy-Hadamard Test – Mathematics Notes – For W.B.C.S. Examination.
  • Cauchy-Hadamard Test – Mathematics Notes – For W.B.C.S. Examination.
    Posted on October 21st, 2019 in Mathematics
    Tags: , ,

    Cauchy-Hadamard Test – Mathematics Notes – For W.B.C.S. Examination.

    কাউচি-হাডামার্ড পরীক্ষা – গণিতের নোট – WBCS পরীক্ষা।

    In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy,but remained relatively unknown until Hadamard rediscovered it.Hadamard’s first publication of this result was in 1888;he also included it as part of his 1892 Ph.D. thesis.Consider the formal power series in one complex variable z of the form.Continue Reading Cauchy-Hadamard Test – Mathematics Notes – For W.B.C.S. Examination.

    {\displaystyle f(z)=\sum _{n=0}^{\infty }c_{n}(z-a)^{n}}

    where {\displaystyle a,c_{n}\in \mathbb {C} .}

    Then the radius of convergence {\displaystyle R} of ƒ at the point a is given by

    {\displaystyle {\frac {1}{R}}=\limsup _{n\to \infty }{\big (}|c_{n}|^{1/n}{\big )}}

    where lim sup denotes the limit superior, the limit as n approaches infinity of the supremum of the sequence values after the nth position. If the sequence values are unbounded so that the lim sup is ∞, then the power series does not converge near a, while if the lim sup is 0 then the radius of convergence is ∞, meaning that the series converges on the entire plane.

    Proof of the theorem

    Without loss of generality assume that {\displaystyle a=0}. We will show first that the power series {\displaystyle \sum c_{n}z^{n}} converges for {\displaystyle |z|<R}<img class=”mwe-math-fallback-image-inline” src=”https://wikimedia.org/api/rest_v1/media/math/render/svg/60c24dbdb8afa15bfa5c563fa13d29b8fa68899d” alt=”|z|, and then that it diverges for {\displaystyle |z|>R}R” aria-hidden=”true”>.

    First suppose {\displaystyle |z|<R}<img class=”mwe-math-fallback-image-inline” src=”https://wikimedia.org/api/rest_v1/media/math/render/svg/60c24dbdb8afa15bfa5c563fa13d29b8fa68899d” alt=”|z|. Let {\displaystyle t=1/R} not be zero or ±infinity. For any {\displaystyle \varepsilon >0}0″ aria-hidden=”true”>, there exists only a finite number of {\displaystyle n} such that {\displaystyle {\sqrt[{n}]{|c_{n}|}}\geq t+\varepsilon }. Now {\displaystyle |c_{n}|\leq (t+\varepsilon )^{n}} for all but a finite number of {\displaystyle c_{n}}, so the series {\displaystyle \sum c_{n}z^{n}} converges if {\displaystyle |z|<1/(t+\varepsilon )}<img class=”mwe-math-fallback-image-inline” src=”https://wikimedia.org/api/rest_v1/media/math/render/svg/af16887fa22189a614cc6b70d928d91fd078d5df” alt=”{\displaystyle |z|. This proves the first part.

    Conversely, for {\displaystyle \varepsilon >0}0″ aria-hidden=”true”>{\displaystyle |c_{n}|\geq (t-\varepsilon )^{n}} for infinitely many {\displaystyle c_{n}}, so if {\displaystyle |z|=1/(t-\varepsilon )>R}R}” aria-hidden=”true”>, we see that the series cannot converge because its nth term does not tend to 0.

    Several complex variables

    Statement of the theorem

    Let {\displaystyle \alpha } be a multi-index (a n-tuple of integers) with {\displaystyle |\alpha |=\alpha _{1}+\cdots +\alpha _{n}}, then {\displaystyle f(x)} converges with radius of convergence {\displaystyle \rho } (which is also a multi-index) if and only if

    {\displaystyle \lim _{|\alpha |\to \infty }{\sqrt[{|\alpha |}]{|c_{\alpha }|\rho ^{\alpha }}}=1}

    to the multidimensional power series

    {\displaystyle \sum _{\alpha \geq 0}c_{\alpha }(z-a)^{\alpha }:=\sum _{\alpha _{1}\geq 0,\ldots ,\alpha _{n}\geq 0}c_{\alpha _{1},\ldots ,\alpha _{n}}(z_{1}-a_{1})^{\alpha _{1}}\cdots (z_{n}-a_{n})^{\alpha _{n}}}
    For Guidance of WBCS (Exe.) Etc. Preliminary , Main Exam and Interview, Study Mat, Mock Test, Guided by WBCS Gr A Officers , Online and Classroom, Call 9674493673, or mail us at – mailus@wbcsmadeeasy.in
    Visit our you tube channel WBCSMadeEasy™ You tube Channel
    Please subscribe here to get all future updates on this post/page/category/website
    "WBCS

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

     WBCS Foundation Course Classroom Online 2024 2025 WBCS Preliminary Exam Mock Test WBCS Main Exam Mock Test WBCS Main Language Bengali English Nepali Hindi Descriptive Paper